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Regularization of dynamics in an ensemble of nondiffusively coupled chaotic elements
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We investigate the dynamics in an ensemble of chaotic elements with nondiffusive coupling. First, we
analyze the case of global coupling. The type of coupling we consider leads to the suppression of oscillations
in the whole ensemble at a high coupling strength. A distinct feature of this transition from high-dimensional
chaos at a low coupling strength to the stationary state is that there is no partially ordered phase characterized
by a large number of coexisting synchronized clusters. A two-cluster mode emerges abruptly, replacing the
asynchronous mode. We focus on the influence of connectivity on the dynamics in the two-cluster modes and
their domains of existence. We introduce a parameter that characterizes the connectivity: the range of coupling.
Our computational and analytical results indicate that the most significant changes in the dynamics occur in the
case of local coupling, when extra connections are added. By contrast, if the range of coupling is high, even

substantial changes in this range have a small influence on the dynamics.

DOI: 10.1103/PhysRevE.72.046209

I. INTRODUCTION

Mechanisms of transition between chaotic and regular
collective dynamics in ensembles of coupled elements has
been a subject of intensive study nowadays (see, e.g., Ref.
[1], and references therein). Chaotic collective dynamics
may emerge in ensembles of simple oscillators with
amplitude-dependent frequencies or when their natural fre-
quencies differ [2—6]. In ensembles of chaotic elements, col-
lective chaos emerges from the dynamics of individual ele-
ments and does not require the ensemble to be non-
homogeneous. However, in both cases, the chaoticity of the
dynamics may be reduced or entirely suppressed when the
coupling strength increases [2-10]. The mechanisms and
properties of such a regularization transition vary signifi-
cantly from system to system.

Spontaneously emerging synchronous clusters are known
to accompany this regularization [7-11]. In an ensemble of
simplest identical phase oscillators, formation of clusters can
be achieved when a multiharmonic coupling function is con-
sidered [12]. In a more complicated ensemble of globally
coupled chaotic maps, the transition between a turbulent
phase and a completely synchronous state occurs through a
partially ordered phase, where a wide variety of clusters co-
exists, and an ordered phase, where there are only a few
clusters [7]. So, when the coupling increases, a gradual de-

*Electronic address: akuznetsov@math.iupui.edu
"Electronic address: shalfeev@rf.unn.ru
*Electronic address: Itsimring @ucsd.edu
YPresent address.

1539-3755/2005/72(4)/046209(11)/$23.00

046209-1

PACS number(s): 05.45.Xt, 89.75.Kd, 82.40.Bj

crease in the number of the coexisting clusters eventually
leads to the complete synchrony. A similar transitional clus-
ter formation has been observed in a system of globally
coupled Rossler oscillators, but the number of clusters was a
strongly nonmonotonic function of the coupling strength [8].
The emergence of coherent clusters (elements of which are
not exactly synchronized) was shown in a lattice of locally
interacting Hindmarsh-Rose chaotic oscillators, which mod-
els biological excitable media [9]. There, the regularization
mechanism was shown to be related to the appearance of
periodic dynamics in a local analog of the mean field for a
group of neurons. In Ref. [10], the transitional clusterization
has been observed experimentally: when global coupling was
applied to an ensemble of chaotic electrochemical oscillators
to achieve synchrony, stable clusters formed at an intermedi-
ate coupling strength.

The majority of studies and, in particular, all the papers
mentioned above, focused on either global (all-to-all) or lo-
cal diffusive-type coupling. These two cases are qualitatively
different: in contrast to the local coupling, in globally
coupled systems, there is no convergence toward statistical
equilibrium, i.e., the variance of the mean field does not
depend on the number of elements N as 1/N, but reaches
saturation for large N [13,14]. It is very interesting to study
systematically the variation in properties of an ensemble
when the connectivity continuously varies between local and
global. This area of research has become very active in the
last several years. A desynchronization transition in an en-
semble of phase oscillators [15] and sine-circle maps [16]
has been observed as the range of interactions decreases. The
synchronization of a one-dimensional array of phase oscilla-
tors with purely repulsive (inhibitory) coupling of varying
range was recently studied in Ref. [17], showing a surprising

©2005 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.72.046209

KUZNETSOV, SHALFEEV, AND TSIMRING

advantage of the local coupling in synchronizing the array.
Another result for phase oscillators [ 18] and for chaotic maps
[19] with long-range interactions indicate the dependence of
the synchronization on the number of dimensions of the ar-
ray. An interesting dependence of the length of a transient on
the network connectivity is shown for pulse-coupled oscilla-
tors in Ref. [20]. In Ref. [21], the authors have shown that
the degree of connectivity in an ensemble of randomly
coupled chaotic maps is critical for formation of clusters.
Finally, in a recent paper [22] the authors studied pattern
formation in a two-dimensional array of phase oscillators
with varying range of phase-shifted coupling.

In this paper, we study an ensemble of oscillators with
frequency control [23] frequency locked loop (FLL) and
phase locked loop (PLL), which are widely used as a model
for various technological systems such as phase antenna ar-
rays [24,25], digital data transmission systems [26,27], laser
frequency control [28], and superprecise measurements
[29,30]. What makes this system different from more com-
monly studied models is a strongly nonlinear, nondiffusive
type of coupling. This type of coupling emerges naturally in
technological applications (PLLs and FLLs). In addition
growing interest in nonlinear nondiffusive coupling is also
motivated by its relevance in neurobiology, where various
types of synaptic coupling (both inhibitory and excitatory)
are prevalent [31]. Each oscillator in our ensemble is de-
scribed as a three-dimensional system of ODE, and in isola-
tion it displays chaotic dynamics. Our study shows that, if
the coupling is sufficiently strong, then a uniform stationary
state is realized in the system. Thus, the introduction of the
nonlinear nondiffusive coupling between the elements leads
to a transition from chaotic to regular oscillations and, even-
tually, to the suppression of the latter. A distinct feature of
the transition from the high-dimensional chaos at a low cou-
pling strength to the stationary state is that there is no par-
tially ordered phase with a rich variety of coexisting cluster
modes. A two-cluster mode emerges abruptly, replacing the
asynchronous mode.

We focus on the investigation of the influence of connec-
tivity on the dynamics for the two-cluster solutions and their
domains of existence. We introduce a parameter that charac-
terizes the connectivity: the range of coupling. When the
range of coupling S decreases, the existence domains of the
two-cluster modes shrink. We distinguish a common feature
of our diagrams: almost all of the cluster modes do not exist
in the case of local coupling S=1. But, by contrast, all these
modes have significant existence domains at S=2. This
means that the boundaries of the existence domains undergo
a very sharp transition when the range of coupling S changes
from 1 to 2. This result is also supported by our analytic
calculations of the stability boundary for the homogeneous
passive mode (stationary state), which shows the most sig-
nificant shift when S changes from 1 to 2.

The paper is organized as follows. In Sec. I we present
the model for the individual chaotic oscillator and nonlinear
coupling and briefly discuss their properties. Section III is
devoted to the case of globally coupled ensemble. Here we
introduce and investigate the two-cluster reduced model de-
scribing the partially synchronized state of the ensemble. We
also study the stability properties of homogeneous states in
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this section. In Sec. IV we investigate the influence of vari-
able connectivity on the dynamics of coupled chaotic ele-
ments. Section V presents our conclusions.

II. MODEL

We take the following set of equations as a mathematical
model for the isolated element of the ensemble [32]:

o aly—x+ S0,

dy

D ox—ytz

dr X—=y+2Z

dz

= __ By, 1
s By (1)

Here, a and B are positive parameters. We choose a smooth
function in the form

2cpx
f(x)=TC%xz—61x3, (2)

where c; is small, to describe the nonlinearity of the element.
Equations (1) describe an electronic circuit known as Chua’s
circuit [33]. In this case, the variables represent dimension-
less currents and voltages. On the other hand, the equation
for an oscillator with frequency control [23] reduces to the
system (1) in a certain case. Then, the variable x represents
relative deviation of the oscillator frequency from the refer-
ence frequency and f(x) is the nonlinear characteristic of the
frequency discriminator in the control loop. In this paper, we
focus on the latter application.

Now we introduce the model of an ensemble in which by
varying a parameter it is possible to pass from a chain of
locally coupled elements to an ensemble with global cou-
pling. Each element in this chain is coupled with S right-side
and S left-side neighboring elements:

s
d.xi d
o aly; = x;+ flx) ] + Zgg [F(xi_p) + Flxp)],
dy; +
—— =X, —V; )
dt l yl Zl
dZ,'
Ei_ gy, 3
I Byi (3)

Here, i is the number of the element, i=1,N, N is the number
of elements in the ensemble, and d is the coupling parameter.
We choose N=55 for our numerical experiments and discuss
variations of this number in the analytical part of our study.

As seen in Eq. (3), the coupling term has the nondiffusive
character. This choice is motivated by the fact that the
individual element represents the loop of frequency control
used for generators of various nature. The exchange of
the signals from the control loop is the simplest and the most
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natural way of connecting this systems, and this provides the
nondiffusive type of coupling introduced in Eq. (3). In
this case, the inputs from different elements sum when
the elements are synchronized, in contrast to diffusive cou-
pling, for which the coupling term vanishes in synchrony. In
particular, in the state of full synchronization [x;=x(z) for all
i], the sum in Eq. (3) gives 2SF(x), and we compensate this
summation dividing the coupling term by 2§. The adopted
normalization allows us to focus on more complex effects
than the summation.

Driven by the application of the considered system as an
oscillator with frequency control, we take the coupling func-
tion in the form

2yx
1+ v

which is very similar to the nonlinear characteristic of the
partial element f(x). Taking F(x)=/(x) would mean that the
signal from the frequency discriminator of each element is
directly used as coupling. In this paper, we allow this two
functions to be different taking vy not equal to ¢,. Technically
this means that another frequency discriminator is used for
the coupling. Dynamical motivation of this choice is that
now we have a possibility to superimpose attractors in the
individual elements with different parts of the coupling func-
tion. Generally speaking, this coupling function represents
one of the simplest nonlinear coupling schemes, which
makes its choice logical in order to extend the exploration of
dynamics to the case of nonlinear coupling.

In our computer simulations, parameters of an isolated
element are chosen in the existence domain of a spiral cha-
otic attractor a=6.4, B=10, ¢;=0.7, ¢;=0.05. We assume
periodic boundary conditions x;_,=x;_;,y for all i—-k<1;
Xipx=X; 44—y for all i+k>N. The global coupling corresponds
to S=(N-1)/2. The other limiting case of the system (3),
namely, a chain of locally coupled elements, is realized for
S=1.

F(x) = 4)

III. GLOBALLY COUPLED ENSEMBLE

In this section, we consider the globally coupled ensemble
[S=(N-1)/2]. In this case, the sum that represents the influ-
ence of all the elements in the ensemble upon the ith element
can be written as a sum of two parts:

N
S A= B FR), )
N-1,072 N-1" N-1

where B=(1 /N)Ej-vle(xj) is called a mean field, and the sec-

ond part depends on x; only. Thus, the elements of any en-

semble with global coupling interact with each other only
through the mean field, which renders the spatial organiza-
tion of the array irrelevant.

A. Synchronization of elements in an ensemble with global
coupling

First, we describe the changes in dynamics of the globally
connected ensemble when the coupling coefficient is varied.

PHYSICAL REVIEW E 72, 046209 (2005)

- SR

FIG. 1. A pair of clusters: d=0.55. The time series of the x
variables for two elements that belong to different clusters. We call
the element with large amplitude active, and with small passive.

An asynchronous mode of oscillations of elements is ob-
served in computer simulations for small values of the cou-
pling parameter. If the coupling parameter exceeds a bifur-
cation value, the asynchronous mode collapses, and one of
synchronous modes sets in with formation of a pair of clus-
ters so that some elements of the ensemble belong to one
cluster, all the rest to the other cluster. Inside the clusters, the
elements are synchronized in phase, so that

xi=a((t), y;=bi(t), z=c/(); i=1,M, (6)

xj=a)(t), y;=by(t), z;=cy(1); j=M+I1N.

A variety of such two-cluster modes, which different from
one another by the number of the elements belonging to one
of the clusters, M, coexists, giving rise to multistability. Fig-
ure 1 presents the time series for the x variables of two
elements that belong to different clusters. The difference be-
tween the amplitude of oscillations in these time-series al-
lows us to refer to one of the clusters as active and the other
as passive. Figure 2 shows the existence domain of these
modes, denoted as D, depending on the coupling parameter
and the number of elements belonging to the active cluster
for y=3. In the limiting cases, all N elements belong to one
cluster. We call the mode homogeneous active if all elements
are active, and homogeneous passive if all of them are pas-
sive. Note that the homogeneous passive mode is stationary,
and its existence domain is not bounded from above, in con-
trast to all synchronous modes.

50 r

40 r |
30 r
20 1

10 r

0.6 0.8 1 1.2 1.4
d
FIG. 2. The domain of existence of the two-cluster modes D vs
the number of active elements M. The curve composed of the solid
and dashed segments corresponds to the loss of transversal stability

of the corresponding manifold. The dashed part is a fuzzy boundary
(see an explanation below).
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Thus, the introduction of the global coupling among the
elements of the ensemble causes formation of a pair of clus-
ters, within which all the elements are synchronized in phase.
In contrast to other known cases, there is no transitional de-
crease in the number of clusters, i.e., with growing coupling
strength, the pair of clusters emerges abruptly, replacing the
asynchronous mode. In the existence domain of the cluster
modes, the ensemble possesses high-order multistability, and
the particular cluster mode that sets in depends on the initial
conditions. Once a mode sets in, it preserves up to the cou-
pling strength corresponding to the upper boundary of the
existence domain of this mode. When the coupling strength
exceeds the latter value, the number of elements in the pas-
sive cluster grows due to a transition to another cluster mode.
This gradual growth of the passive cluster eventually leads to
the collapse of oscillations and emergence of the homoge-
neous passive mode, which remains stable for arbitrary
strong coupling.

B. Homogeneous passive mode

Now, we analyze homogeneous modes realized in the en-
semble with global coupling. The equality of the correspond-
ing variables of all elements holds:

xJ»:x(l‘), yj:y(t), Z‘/'=Z(l‘)§ J=UV (7)

This condition describes the manifold of the homogeneous
modes, where both active and passive modes are located. By
substituting Eq. (7) into the system (3) in the case of global
coupling [below denoted as Eq. (3)g), We obtain a reduced
model for dynamics in the homogeneous modes:

d
Z = aly —x+ () +dF (),
dt
dy_ .
dt_x rTe
dz

—-—ﬁy (8)

The homogeneous passive mode can be viewed as the
limiting case of the cluster mode in which there are no active
elements in the ensemble. The coordinates of the equilibrium
state corresponding to this mode can be easily obtained from
the system (8) as functions of the coupling parameter. The
characteristic equation describing stability of this equilib-
rium state can be obtained analytically and splits into N
equations in the form

[o(xg) = N][A2+ N+ B] + a\ = — dQ(n,xo) [N+ N + B],
©)

where n=1,N, o(x))=of-1+ fi(x)], and xq is the x coordi-
nate of the equilibrium state. The coefficient (n,x,) is writ-
ten as

2k

Fl(x )N/21
Qn,xg) =2—- al > cos(

n)+cos(7'rn), (10)
N-1 35

for an even number of elements N, and as
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Flx )(Nl/2
Q(n,xy) = 2 al > cos(

27Tkl’l)
-1 5

(11

for an odd number of elements. In both cases, it is easy to
obtain

Fi(xo) ifn=N,

Q(n,x0)= _F;(Xo) ntN. (12)

Hence, one of the N equations has a form

[o(xg) = N]JIN2 + N+ B] + a\ = — dF(xo)[N> + \ + B],

(13)
and all the rest are written as
[o(xg) = NIIN2+ N+ Bl +a\ = Fl(xo)IN>+ N + 8.
(14)

Both of these equations are third-order with respect
to N. Writing the above equations in the general form
M+aN>+bA+c¢=0 and using the standard criteria under
which a bifurcation of the birth of a limit cycle from an
equilibrium state or contraction of a limit cycle to an equi-
librium state ab—c=0 occurs, we arrive at the equation

2
l-axVl+a" +2a-4
d0(n,x0) = — oxg) + ——— 2“ @48 5

The substitution of the values (12) for Q(n,x,) yields equa-
tions for two curves in the space of parameters. On one of
these curves, a single bifurcation of the birth of a saddle limit
cycle from the equilibrium state occurs. On the other one,
N—1 such bifurcations occur simultaneously. The latter cor-
responds to a change in stability of the manifold of the ho-
mogeneous modes at the stationary state with respect to per-
turbations transversal to the manifold. The simultaneous
occurrence of N—1 such bifurcations reflects the spacial de-
generation of the system due to the global character of cou-
pling. The single separate bifurcation corresponds to a
change in stability of the equilibrium state inside the mani-
fold of the homogeneous modes.

The order in which these two bifurcation points are ar-
ranged when d decreases depends on the parameter 7y of the
coupling function. As shown in Fig. 3, if +y is large, then the
equilibrium state becomes stable with respect to all perturba-
tions inside the manifold of the homogeneous modes first,
and the consequent degenerate bifurcation giving the trans-
versal stability determines the boundary of its stability do-
main. In contrast, if y is small, the order of these bifurcations
is reversed. It is obvious that these two curves intersect at the
point that corresponds to F(xy)=0 because (n,xy)=0 at
this point, and Egs. (13) and (14) become identical. Due to
the opposite signs in front of the right-hand sides (RHSs) of
these equations, the direction of the shift for the bifurcation
points, when F(x,) # 0 is introduced, must be opposite, but
which of them occurs at a lower coupling strength depends
on the sign of F_(xy). In our case, for lower vy, F.(xy)>0,
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FIG. 3. (Color online) Bifurcation boundaries for the equilib-
rium state for the homogeneous passive mode [Eq. (15)]. The solid
curve corresponds to the single separate bifurcation inside the mani-
fold [see Eq. (13)]. The dashed curve shows the degenerate bifur-
cation that changes the transversal stability of the manifold at the
equilibrium [see Eq. (14)].

which introduces a dissipative term into the system for trans-
versal perturbations (see Appendix) and shifts the corre-
sponding bifurcation boundary downward with respect to the
coupling strength. Simultaneously, a term that can be inter-
preted as negative effective dissipation (the coupling term) is
introduced into the system (8), stability analysis of which
gives Eq. (13). Consequently, the point of the bifurcation
inside the manifold shifts upward. Similar reasoning can be
applied to the case F,(xy) <0. Thus, the order of the bifur-
cations is determined by the sign of the first derivative of the
coupling function.

What also makes the RHS of Eq. (14) [but not Eq. (13)] to
vanish is growing number of elements N. The stability
boundary as a function of N is shown in Fig. 4. In the limit
N— o, the system for transversal perturbations (Appendix)
coincides with the linearized system for the element in iso-
lation (1), and consequently Eq. (14) takes the form of the
characteristic equation for the isolated element. For large N,

0.6

0.5 Frrr
0.4 ﬁ"

T 03¢

0.2 r

0.1 r

O 1 ' ) ) )
10 20 30 40 50

N

FIG. 4. The boundary (15) of the stability domain of the equi-
librium state as a function of the number of elements in the en-
semble N in the case y=3. The dashed line shows asymptotes for
N— o, calculated when the RHS of Eq. (14) is zero. In the case of
low 1, the boundary does not depend on N because it is determined
by a bifurcation inside the manifold of the homogeneous modes
(data not shown).
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FIG. 5. The maximal transversal Lyapunov exponent for the
homogeneous active mode at the lower boundary of its existence
domain. The mode is stable where the exponent is negative.

neither the dynamics on the manifold, driven by Eq. (8), nor
the transversal stability depends on N, leading to a horizontal
asymptotes of d(N). We note that the adopted normalization
of the coupling by 1/(N—1) contributes to this effect because
it eliminates N in system (8). We also note that, for the case
of large number of elements, the transversal stability is af-
fected by the coupling indirectly only, i.e., due to changes in
dynamics and shifts of the attractor on the manifold.

C. Homogeneous active mode

The dynamics in the homogeneous active (oscillatory)
mode is much more complex. At the lower boundary of its
existence domain, it is chaotic. As the coupling strength d
increases, a reverse Feigenbaum scheme (period halving) is
realized inside the domain. This way the system transits from
chaotic to regular dynamics. Obviously, this transition can be
described in the framework of the reduced system (8) be-
cause synchrony does not violate. In contrast to the homoge-
neous passive mode, the existence domain for the active one
is bounded from above. Our investigation shows that this
boundary exists in the reduced system (8) as well, but it may
not coincide with the upper boundary for the domain for this
mode in the full system (3)g,,, Which may occur at a lower
coupling strength.

The chaoticity of the dynamics leads to a very complex
structure of the lower boundary of the existence domain for
the homogeneous active mode. Figure 5 presents the maxi-
mal transversal Lyapunov exponent for the system in this
mode. When the exponent is negative, it shows stability with
respect to the transversal perturbations. As the coupling pa-
rameter increases, the exponent crosses zero several times in
a short interval, indicating that the mode becomes stable and
then unstable repeatedly. We note that the stability loss is
associated with emergence of periodic windows and some
other structural changes of the attractor.

Figure 6 shows the existence domain of the homogeneous
active mode as a function of y. The mode is stable for no
coupling strength when 7 is small. For a high v, the lower
boundary of the domain is fuzzy because of chaoticity of the
attractor, as described above. We depict the points at which
the transverse Lyapunov exponent is equal zero. For higher
coupling strength, the mode remains stable up to the saddle-
node bifurcation of the limit cycle, as a result of which the
mode collapses. By contrast, for lower v, there is a loss of
transversal stability at a coupling strength lower than the
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FIG. 6. (Color online) The boundaries of the existence domain
of the homogeneous active mode as a function of . The solid curve
corresponds to the saddle-node bifurcation of the limit cycle corre-
sponding to the mode. The dashed curve is a schematic curve of the
loss of the transversal stability (synchronization threshold), which is
fuzzy. The real points where the mode changes its transversal sta-
bility are shown by circles.

saddle-node bifurcation (see, e.g., y=2). Moreover, the sta-
bility domain splits into a few well separated intervals of d
(as for y=1.8). We sketch the synchronization threshold (the
boundary of loss of the transversal stability) by the dashed
curve, keeping in mind that it corresponds to a set of very
close bifurcation curves.

D. Two-cluster modes

Next, we analyze the dynamics of the two-cluster modes,
defined by Eq. (6). The latter condition gives us an invariant
manifold for each number of active elements, M. Inside such
a manifold, the dynamics is given by a six-dimensional re-
duced model, which can be obtained similar to the previous
case (8) by substituting Eq. (6) into Eq. (3)gep. Our investi-
gation shows that, even though the passive elements are
present in the ensemble, the dynamics and parametric por-
trait remain qualitatively the same as in the homogeneous
active mode. However, the values of the coupling parameter
corresponding to the period-halving bifurcations in the
Feigenbaum cascade vary when the passive elements
emerge.

The boundaries for the existence domain of the cluster
modes also depend on the size of the passive cluster. We take
y=3 for further study. The upper boundary, which corre-
sponds to the same saddle-node bifurcation of limit cycles,
shifts to higher value of the coupling strength when the num-
ber of active elements decreases as shown in Fig. 2. The
lower boundary corresponds to the loss of the transversal
stability of the corresponding manifold. Given two distinct
clusters now, it is enough that the transversal perturbations
grow in only one of them in order for the mode to become
unstable. The maximum transversal Lyapunov exponents for
each of the clusters, shown in Fig. 7, say which cluster loses
stability. The figure shows that, for small number of active
elements, the passive cluster loses its stability first, while for
large number of active elements, the active cluster becomes
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FIG. 7. The maximal transversal Lyapunov exponents as a func-
tion of the coupling strength for each of the clusters in a two-cluster
mode. The solid curve corresponds to the active cluster, the dashed
one to the passive. (A) M=45; (B) M=10.

unstable first. This perfectly agrees with the limiting cases
of homogeneous modes. At an intermediate number of active
elements, the synchronization threshold has a cusp that
indicates the collision of these two scenario of the loss of
synchrony.

IV. DYNAMICS OF THE ENSEMBLE WITH VARIABLE
RANGE OF COUPLING

In this section, we study the changes in the dynamics of
the system (3) when the range of coupling is varied.

A. Homogeneous modes

Consider first the effect of changing the connectivity on
the homogeneous modes in the ensemble. As before, these
modes are defined by the identity of all corresponding vari-
ables of the elements (7). Substituting these equations into
the initial model (3), we find that the dynamics in these
modes is described by the same system (8) for any range of
coupling. Thus, if the solution corresponding to a homoge-
neous mode remains stable when the range of coupling
changes, then the dynamics in this mode must be indepen-
dent on the range of coupling because the latter does not
enter the system (8).

In particular, the equilibrium state corresponding to the
homogeneous passive mode stays at the same position when
the range of coupling varies. As in the case of global cou-
pling, the characteristic equation describing stability of this
equilibrium state splits into N third-order equations of the
same form (9) for an arbitrary range of coupling, but the
function Q(n,x,) takes the form

27Tkl/l>, (16)

S
1
Q(n,x0)=§F;(xo)g cos< N

where x, is the x coordinate of the equilibrium state. Analo-
gously to the previous case we obtain N curves in the param-
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FIG. 8. (Color online) A few of the bifurcation curves (17) for
the equilibrium state (dashed and dotted curves) corresponding to
different n(y=3) vs the range of coupling S. The resulting stability
domain of the equilibrium is shadowed and bounded by the solid
curve.

eter space, on each of which a bifurcation of the birth of a
saddle limit cycle from the equilibrium state occurs:

d*Qn)? +dQ(n)[20-1+a]+[B-0o—-a+o*+0a]=0,
(17)

where n=1,N.

The position of the bifurcation point corresponding to
n=N does not depend on the range of coupling, S, since
Q(N,xy)=F/(x). Figure 8 presents a few of the bifurcation
curves corresponding to different n and the stability domain
of the equilibrium as a function of the range of coupling for
v=3. The curves converge to one point at S=(N-1)/2,
which is the case of global coupling. When the coupling
parameter increases, the stability of the equilibrium state is
achieved only after all N bifurcations. When S varies, all
these curves behave nonmonotonically and intersect, i.e., the
order of these bifurcations changes. Hence, the stability
boundary is composed of segments of the bifurcation curves
corresponding to different n. The most interesting fact is that
the most significant shift of the boundary occurs in the inter-
val where the range of coupling is very small, i.e., when it
changes between 1 and 2.

Consider now the dependence of the bifurcation values
and the boundary of the stability domain as a function of y in
the case of nonglobal coupling. As we said before, the bifur-
cation value corresponding to n=N does not depend on the
range of coupling. This is the bifurcation that occurs inside
the manifold of the homogeneous modes, and its dependence
on vy in the case of global coupling was given by the solid
curve in Fig. 3. Hence, the same curve preserves for any
coupling range. The other curve in Fig. 3 splits into N—1
bifurcation curves since the spacial degeneration is removed
for nonglobal coupling. The splitting is maximal in the case
of local coupling S=1, which is presented in Fig. 9, but the
picture is qualitatively the same in other cases also. The fig-
ure shows that the solid curve, corresponding to n=N,
bounds the other curves from below for high y and from
above for low 7. This means that the stability boundary of
the equilibrium state does not depend on the range of cou-
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Y
FIG. 9. (Color online) The bifurcation curves for the equilibrium

state (17) in the case of local coupling. The solid curve coincides
with that for global coupling.

pling if vy is small because the boundary is determined by the
bifurcation inside the manifold of the homogeneous modes,
corresponds to n=N. By contrast, for high 7, the stability
domain shows the dependence on S as in Fig. 8.

The solution corresponding to the homogeneous active
mode also exists for changing range of coupling. Our
computer experiments for y=3 show that this mode remains
stable when the range of coupling S decreases from global,
and the dynamics in this mode does not depend on S, in
complete agreement with the model (8). We have shown
that when the range of coupling is decreased, the coupling
parameter that corresponds to the upper boundary of the
existence domain does not change. Hence, for any range
of coupling, this bifurcation occurs inside the manifold of
the homogeneous modes and is described by the reduced
model (8).

But the uniform state (7) may become unstable, and so the
lower boundary of the existence domain for this mode may
change when the range of coupling varies. As before for
global coupling, the lower boundary is fuzzy and showed
schematically in Fig. 10 with an error 6d=0.1. We note that
at S=1 the mode does not exist for any value of the coupling
parameter. In contrast to that, at S=2, the domain of its ex-
istence is 0.65=d=0.864. The homogeneous mode col-
lapses in the transition from S=2 to S=1 for an arbitrary
values of the coupling parameter in the above interval. The
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FIG. 10. (Color online) The existence domain of the homoge-
neous active mode vs the range of coupling S.
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FIG. 11. The spatial distributions of the mean and the instanta-
neous values of x; for an intermediate coupling range S=9.

fact that no changes occur in the reduced model (8) as a
result of this transition indicates that an increase of the range
of coupling causes loss of synchronization, i.e., loss of sta-
bility for the uniform distribution of variables. Consequently,
the absence of the active homogeneous mode at S=1 (i.e., in
the case of local coupling) is caused by a sharp increase in
the value of the synchronization threshold. We described an
analogous feature for the stability boundary of the homoge-
neous passive mode.

B. Pair of clusters

Next, we analyze the dependence of the two-cluster
modes and their existence domains on the range of coupling
in the ensemble. By contrast to the homogeneous mode, de-
creasing range of coupling changes the dynamics in the clus-
ter modes: the dynamics of an element becomes dependent
on its position relative to the boundary of the cluster. To
illustrate that, we choose the cluster mode in which 20 neigh-
boring elements constitute the active cluster, specify the cou-
pling parameter d=0.8 and change the range of coupling
from S=(N-1)/2=27 (global) to 1 (local). When the range
of coupling decreases, the ensemble acquires the spatial
structure of a circular chain. Spatial distributions of instan-
taneous and average values of the x; variables along the
chain are plotted in Fig. 11 for an intermediate value of S.
Apparently, the instantaneous and the mean values for the
elements in the same cluster become nonidentical when S
decreases. When the range of coupling decreases, the sag in
the instantaneous distribution increases, indicating growing
phase shifts between elements. However, for arbitrary range
of coupling, it is possible to unambiguously classify the ele-
ments as active and passive by the difference in values of the
mean variables. This allows us to define the boundaries of
the existence domain for the modes, even though the type of
synchronization is more complex when the coupling is not
global, and the low-dimensional model (8), obviously, is not
valid. However, when the coupling strength increases inside
the existence domain for a two-cluster mode, the bifurcation
transitions are the same as in the model (8): the modes are
chaotic at a lower coupling strength and become periodic by
the reverse Feigenbaum scheme.

Consider the dependence of the existence domains for the
two-cluster modes on the range of coupling and the size of
the active cluster. Figure 12 presents the boundaries for the
domains of existence in the cases when the active cluster
consists of 10, 20, 30, 40, and 50 neighboring elements. The
comparison of the lower boundary for M=10 (the boldest
solid curve) with the stability boundary for the homogeneous
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FIG. 12. The existence domains for the cluster modes composed
of different number of elements. The number of active elements M
corresponding to each of the curves is shown in the picture. (The
fuzziness of the lower boundary is not reflected but persists in the
majority of the cases.)

passive mode (see Fig. 8) shows that when the range of
coupling is sufficiently large, these curves remain close and
demonstrate a similar dependence on S. This dependence of
the lower boundary for this cluster mode remains weak until
S=7. When S decreases further, the coupling parameter at
the boundary increases quickly from 0.5 to 0.74, and stays
approximately at this value until S=2. The coupling param-
eter that corresponds to the upper boundary of the existence
domain of this two-cluster mode shows a gradual monotonic
decrease when the range of coupling § decreases. As a result,
for §=2, the existence domain for the mode is approximately
0.74=d=<0.91. By contrast, this cluster mode does not exist
in the local coupling case S=1. Thus, analogously to the
homogeneous active mode, considered above, this two-
cluster mode collapses in the transition from S=2 to S=1 in
a long interval of the coupling parameter.

For low enough number of active elements (M=20,30),
the lower boundary of the existence domain remains similar
to one described above: when the range of coupling de-
creases, first, the coupling strength corresponding to the
boundary shows a weak dependence on this parameter, but
then undergoes a much sharper increase up to d=0.74. The
boundary stays approximately at this coupling strength till
S§=2. Comparing these graphs, we see that, as the number of
active elements increases, the region of the weak dependence
shrinks. In particular, for M=20, it ends at S=14, and, for
M =30, at S=24. The boundary transits to d=0.74 more
gradually and stays at this value of the coupling parameter
for a longer interval of the range of coupling, S. The changes
are more pronounced when the number of active elements is
greater (see dashed curves). Eventually, for M =50, both re-
gions of weak dependence disappear, and the boundary dis-
plays a gradual shift to higher values of the coupling strength
when the range of coupling decreases.

The upper boundary of the existence domains shows a
gradual, monotonic dependence on the range of coupling in
all of the considered cases. At S=27, i.e., in the case of
global coupling, there is a significant difference in the size of
the existence domains for different numbers of active ele-
ments, which was described in the previous section and
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FIG. 13. (Color online) The domain of existence of the cluster
mode in which the active cluster consists of 1 element.

shown in Fig. 2. In contrast to that, the upper boundaries of
the domains at S=2 are very close to each other. As a result,
at §=2, the domains for modes with different number of
active elements are almost the same. We note that a common
feature of all these diagrams is that the cluster modes do not
exist in the case of local coupling S=1, even though they
have a significant existence domain at S=2, which is ap-
proximately 0.74 <d=0.88 for all of them.

Analyzing the diagrams, we come to a conclusion that the
cluster mode with the minimal number of active elements
M =1 is most probable for local coupling S=1. The existence
domain of this mode is plotted in Fig. 13. The lower bound-
ary of this existence domain almost coincides with the
boundary of the stability domain for the homogeneous pas-
sive mode. By contrast, the dependence of the upper bound-
ary is very distinct from what we saw in all previous dia-
grams: The boundary is almost independent of the range of
coupling when S=35 and corresponds to d=1.43. If the
range of coupling decreases below this value, the coupling
coefficient corresponding to the upper boundary gradually
increases up to d=1.54, but in the transition from S=2 to
S=1, the boundary shifts abruptly to d=1.26. Thus, the
sharpest change of the existence domain for this cluster
mode occurs in the transition between S=1 and S=2.

V. CONCLUSIONS

In this paper, we investigated the influence of connectivity
on the dynamics in an ensemble of nonlinearly nondiffu-
sively coupled chaotic elements. First, we analyzed the case
of global coupling. Unlike more common situations where
coupling leads to synchronization of oscillations, the nondif-
fusive coupling studied here leads to the suppression of os-
cillations in the whole ensemble when the coupling param-
eter is sufficiently high. We discovered a novel scenario of
transition from the high-dimensional chaos at a low coupling
strength to the stationary state at a high coupling strength. A
distinct feature of this transition from other cases when there
is a partially ordered phase with a large number of coexisting
clusters, is that here a two-cluster mode emerges abruptly,
replacing the asynchronous mode. We call one of the clusters
active and the other passive based on the great difference in
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their amplitudes. However, the system remains chaotic in
time after this transition. Further regularization of the dy-
namics occurs via the reverse Feigenbaum scheme. Once the
coupling strength exceeds the upper boundary of the exis-
tence domain for this mode, the number of elements in the
passive cluster grows due to a transition to another cluster
mode. This gradual growth of the passive cluster eventually
leads to the collapse of oscillations and emergence of the
homogeneous passive mode. This scenario allows us to view
the two-cluster modes as a state of partial suppression of
oscillations and give an intuitive explanation of why the
number of clusters does not exceed 2: the system is attracted
to the full synchronization mode (no synchronous clusters),
and the only mechanism that leads to the clustering is the
partial suppression of oscillations.

We have analyzed the effects of nonlinearity of the cou-
pling function: the smaller parameter y the closer function
F(x) to the linear in the range spanned by the attractor. For
the equilibrium state, our analysis shows that, for linear cou-
pling function as well as for any other function with a posi-
tive slope, the equilibrium becomes stable first with respect
to the perturbations transversal to the invariant manifold of
the homogeneous modes. Then it becomes stable with re-
spect to the perturbations inside the manifold. For the cou-
pling function with a negative slope, these bifurcations occur
in the reversed order. This effect has been heuristically ex-
plained in terms of positive/negative dissipation introduced
by coupling into linearized systems inside the manifold and
that for the transversal perturbations.

In contrast, the latter explanation does not work for any
oscillatory mode, i.e., for a synchronous solution. In particu-
lar, the oscillatory (active) mode exists inside the manifold of
homogeneous modes in our system for arbitrary small cou-
pling strength, but it may be unstable with respect to the
transversal perturbations. Because of this, the homogeneous
oscillatory mode is not realized in the ensemble for low 7y,
i.e., in the case where the coupling function approaches the
linear. The same transversal instability restricts the existence
domain of this mode for high v, i.e., when the slope of the
coupling function is negative over the major part of the in-
terval spanned by the attractor

For the diffusive coupling, the type of synchronization is
very dependent on the sign of the slope of the coupling func-
tion. Our research has shown that, in both cases of negative
and positive slope of the coupling function, the in-phase syn-
chronization emerges in the considered system when the cou-
pling strength grows over a threshold. This says that, in the
case of nondiffusive coupling, a shift and structural changes
of the attractor inside the manifold of synchronization play
the major role in stabilizing a synchronous solution.

When the range of coupling S decreases, the existence
domains of the two-cluster modes shrink. There is a well-
pronounced pattern in this dependence of the domains on S:
when the latter decreases, the lower boundaries of the do-
mains shift weakly first, then undergo a quick transition to a
higher coupling strength, and stay approximately at that
value until S=2. For a larger size of the active cluster, the
quick transition starts at a higher S and become steeper, oc-
cupying the whole range of S. We distinguish a common
feature of our diagrams: almost no cluster mode exists in the
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case of local coupling, S=1. But, by contrast, all of these
modes have significant existence domains at S=2. This
means that the boundaries of the existence domains undergo
a very sharp transition when § varies between 2 and 1. This
result is also supported by our analytic calculations of the
stability boundary for the homogeneous passive mode (sta-
tionary state), which shows the most significant shift when §
varies in the above interval. Thus, the most significant
changes in the dynamics occur in the case of local coupling,
when extra connections are added. By contrast, if the number
of connections is high, even substantial changes in this num-
ber have a much weaker influence on the dynamics.

In the case of global coupling, our research has shown
that the dynamics and parametric portraits do not depend on
the number of elements N if this number is high. First, the
reduced system describing behavior on the manifold of the
homogeneous modes does not depend on N. Stability of a
solution on this manifold with respect to the transversal per-
turbations also becomes independent on N for large N. Next,
for the two-cluster modes the reduced system depends on the
proportion of the active and passive elements, including the
ratio M /N, but not the number of elements alone. Finally, the
systems for the transversal perturbations in two-cluster
modes are the same as in the homogeneous case, but driven
by the system on a corresponding manifold. These arguments
imply that our results on existence and stability of the cluster
modes obtained for N=55 can be extended for any other high
number of elements. In particular, the existence domains and
dynamics in the two-cluster modes must be independent of N
if the ensemble remains big. By contrast, in our simulations,
we were unable to achieve a mode with a higher number of
clusters for N=55. Writhing the reduced system and the sys-
tem for the transversal Lyapunov exponents for any of the
latter modes, we can state again that they are independent of
the number of elements N. Thus, the cluster modes where the
number of clusters is more than two do not exist for any high
number of elements.

For changing coupling range, the stability boundary for
the equilibrium state is independent of the number of ele-
ments, as this follows from our analysis. In the case of more
complex modes, such an analytical study is problematic. The
investigation of the influence of the population size on the
number of clusters is much more complicated as well be-
cause the spatial arrangement interferes into the dynamical
aspects. Nevertheless, we have shown that all elements can
still be identified as active or passive. Inside each of these
groups, all dynamical characteristics of the elements are very
similar, which allows us to think about these groups as the
active and passive clusters. Hence, we apply the definition of
a cluster similar to the globally coupled case, neglecting the
spatial arrangement. Our simulations have shown that, with
this definition we always have at most two well separated
clusters. We have tested our results in simulations with an
order of magnitude bigger populations (N up to 550) and
found qualitatively the same behavior. Nevertheless, we
think that computer simulations alone cannot exclude the
possibility of existence of more complex solutions. Hence,
we focus on a particular class of solutions and note that all
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our simulations resulted with a solution from this class.

The model studied here emphasizes the important point
that the specific nature and the range of coupling may affect
drastically the dynamics of large ensembles of elements. We
believe that the novel regularization scenario observed in this
system can also be observed in other chaotic systems with
nonlinear nondiffusive coupling, and this is supported by our
previous study [34]. In particular, the same coupling intro-
duced in Ref. [34] in an ensemble of Rossler oscillators also
leads to suppression of oscillations which is accompanied by
cluster formation, and the number of clusters in that system
also undergo an abrupt transition from equal to the number
of elements in the range of small coupling strength to a few
(3-7) when the coupling strength is above a synchronization
threshold. Here we only considered one-dimensional circular
arrays of oscillators. Other more complex types of network
topology may present additional interesting dynamical fea-
tures.
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APPENDIX: THE SYSTEM FOR THE TRANSVERSAL
PERTURBATIONS

The transversal perturbations define as &,%,{ such that
xi=x()+§& x;=x()=& yi=y(t)+n, y=y(t)-n z;=2()+¢,
z;=z(t)— ¢, where i and j are the numbers of any two ele-
ments from the same cluster (the only cluster), and
x(t),y(1),z(z) is a solution on the manifold of a cluster mode
(the homogeneous modes). We plug the variables in this
form into the systems for ith and jth elements, linearize them
and subtract from each other. The resulting system is

fl—f =afn-E+fl[x(]E - ]%F;[x(t)]f,

dng _ .
g _
o B7. (A1)

Obviously, the coupling term in the first equation is absent if
F[x(1)]=0, and negligible if the number of elements N is
large. In these cases, this system coincides with the linear-
ized system for the isolated element (1). As was indicated
above, Eq. (A1) is the same for transversal perturbations in a
cluster or homogeneous mode, and the only difference is the
system that drives Eq. (A1) via x(z).
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